From macrocyclic lactones back to tetracyclines: new targets for the antiparasitic treatment in animals and humans

Claudio Genchi
Ordinario di Malattie Parassitarie
Università degli Studi di Milano

Medicinal Chemistry in Parasitology, Modena 23 January 2004

Antiparasitic drugs

The “ideal” antiparasitic drug should have a broad spectrum of activity against the different developmental stages of the parasite, have a wide margin of safety, be compatible with other compounds, and in veterinary medicine be easy to administer to a large number of animals, not require a long withholding periods because of residues, and be economical.
Anthelmintics:

- **Cholinesterase inhibitors:** organophosphates
- **Cholinesterase receptors:** imidazothiazoles and pyrimidines
- **Inhibitors of tubulin polymerization:** benzimidazoles and pro-BZD
- **Uncomplers of oxidative phosphorylation:** salicylanilides
- **Inhibitors of enzymes in the glycolytic pathway:** clorsulon

Anthelmintics:

- **Cell membrane depolarizers:**
 - muscle hyperpolarization: piperazine
 - acting in nematodes primarily at the interneuron-motoneuron interface: macrocyclic lactones (MLs)
Human and animal filarial infections

The treatment of bancroftian filariasis continues to rest on diethylcarbamazine, which reduces microfilaraemia and probably kills adult worms ...

In onchocerciasis, diethylcarbamazine is still the standard microfilaricide and suramin is still the standard macrofilaricide. This is not a happy state of affairs, both drugs having grave clinical deficiencies.

Campbell W.C., J. Parasitol. 1986

Ivermectin

The first attempts to use IVM as an antiparasitic compound for humans were in the ’80s:

- Tropical filarial infections
- Gastrintestinal nematode infections
- Human toxocariasis syndromes
- Human scabies and lice infection
The IVM was the first ML found active against internal parasites (nematodes) and external parasites (some insects and mange mites).

The IVM is a semisynthetic compound belonging to the family of avermectins (AVMs), discovered in 1976 throughout the fermentation of the soil microrganism *Streptomyces avermitilis*.

IVM is a mixture of AVM B\(_{1a}\) and AVM B\(_{1b}\).

The IVM was first introduced onto the veterinary market in 1981.

The abamectin, AVM B\(_1\), is particularly active against nematode parasites and was introduced onto the agriculture and veterinary market in 1985.

Other MLs used for treatment and control of endo- and ectoparasites in animals are doramectin, eprinomectin and selamectin, all belonging to the family of AVMs, and milbemycin oxime and moxidectin, belonging to the family of milbemycins (MBMs).
IVM efficacy against nematodes and arthropods took parasite control to a new level. For the first time, a single product, both safe and efficacious against the majority of economically-important internal and external parasites of all food-producing and companion animals, was made available. The amount of product required for activity was 10 to 100 times less than that of previous used products. Ivermectin showed an unprecedented high efficacy (often up to 100%) against inhibited, larval and adult stages of the major nematodes and larval and adult arthropods.

Since their discovery, MLs have exhibited selective toxicity, which defines an ideal anti-infective agent as one that has a chemical target in the microorganism causing infection, but either has no target or has no access to a target in the infected host making these compounds very safe and possible to use in potentially all mammalian hosts, reptiles, birds and fish.
It is likely that the entire family of AVMs and MBMs shares a common mode of action. In target organisms, the action is receptor mediated, and ligand-ligated chloride channels are the target proteins for this class of compounds. AVMs potentiate and/or directly activate arthropod and nematode glutamate-gated chloride channels. Modulation of other ligand-gated chloride channels, such as those gated by neurotransmitter \(\gamma \)-aminobutyric acid (GABA) may also be involved.

The consequence of the AVM-receptor interaction is an increased membrane permeability to chloride ions. In nematodes and arthropods, AVMs potentiate the ability of neurotransmitters such as glutamate and GABA to stimulate an influx of chloride ions into nerve cells resulting in loss of cell function.
Wolbachia endosymbionts: basic information

The presence of intracellular endosymbionts were microscopically observed in filarial nematodes at the beginning of the seventies (McLare et al., 1975; Kozek, 1977)

These bacteria were subsequently identified as *Wolbachia*.

... at the beginning of *Wolbachia* story in the filarial worms
The first report of endosymbiont bacteria in filarial nematodes was in 1995, when the presence Wolbachia was demonstrated by molecular methods in *Dirofilaria immitis*.

Afterwords, *Wolbachia* was found in many species of human and animal filarial parasites (*Onchocerca volvulus*, *Wuchereria bancrofti*, *Brugia malayi* and *D. repens*).

This bacteria are philogenetically close to rickettsiae and are transovarial transmitted to microfilariae. Large amounts of bacteria are found in the cuticle of male and female adult nematodes, in female gonads and in embryos.

Most filarial worms that cause disease in humans and animals harbour Wolbachia

Onchocerca volvulus: river blindness/onchocercomas

Brugia malayi/Wuchereria bancrofti*: lymphatic filariasis (acute/recurrent lymphangitis, elephantiasis, hydrocele)

Dirofilaria immitis: canine and feline heartworm disease
Can Wolbachia be involved in the pathogenesis of the filarial disease?

Wolbachia has been shown to be involved in the immunopathology of filarial infections:

- Crude extracts of *Dirofilaria* holding Wolbachia stimulate host monocytes to produce cytokines and receptor expression. Further, anti-WSP antibodies have been shown in *Dirofilaria* infected animals and humans

- The injection of *Dirofilaria* crude extracts causes shock-like reaction; the reaction has not shown when extracts of filariae not hosting Wolbachia (such as *Acanthocheilonema vitae*) are injected

- Wolbachia seems also to interfere on the host immune response making possible the long survival of the parasite in the host
How does the filarial worm-infected host come into contact with Wolbachia?

- death of microfilariae/adult worms through:
 - natural attrition (caval syndrome)
 - pharmacological treatment

WAM, Dirofilaria and host immune response

WB of serum from cats with *D. immitis*

- A control protein
- B rWSP

Healthy cats *D. immitis*+ cats
How does Wolbachia interact with the immune system?

How does Wolbachia interact with the immune system?

LPS-like (B. malayi, O. volvulus)

Wolbachia associated molecules (WAM)

Wolbachia surface protein (WSP) (D. immitis, B. malayi)

hsp60 (B. malayi, D. immitis)

PAMPs: pathogen-associated molecular patterns

• production of reactive oxygen intermediates (NO)
• production of pro-inflammatory cytokines
• up-regulation of co-stimulatory molecules (adaptive immunity)
Since TLR2 was involved in the recognition of WSP, we next used bone marrow-derived mouse Mphi of the genotype TLR2⁻/⁻ and compared their response to WSP with the reactivities of Mphi from wild-type mice. Stimulation of Mphi from wild-type mice with WSP in three separate experiments resulted in the release of high amounts of TNF-α while significantly reduced levels (41%) were found in supernatants of Mphi from TLR2⁻/⁻ mice.

This result not only further suggests an important role of TLR2 in immune responses towards WSP, but also implies the involvement of TLR2-independent pathways...

ELISA with human sera on a recombinant protein of Wolbachia

(Wolbachia surface protein, WSP)

A 10 sera from patients with pulmonary nodules due to *D.immitis*
B 18 sera from clinically healthy humans living in endemic areas for *D.immitis*
C 14 sera from clinically healthy humans living in areas free from *D.immitis*

The *Wolbachia/filarial worms* symbiosis is obligate. The treatment with antibiotics effective against rickettsiae (such as tetracyclines and rifampicin), makes a dramatic decrease of *Wolbachia* in filarial body, damages the nematode by blocking its development, embryogenesis and production of microfilaria. Clinical studies have shown the efficacy of tetracyclines in decreasing the production of circulating mf in also in humans.
Antibiotics for the treatment of onchocerciasis and other filarial infections.

Hoerauf A, Adjei O, Buttner DW.

Department of Helminthology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. hoerauf@bni.uni-hamburg.de

More effective drugs are needed for the treatment of human filarial diseases and the elimination of these infections as a public health problem. The drugs must either kill or sterilize adult worms. The relevant filariae, *Onchocerca volvulus*, *Wuchereria bancrofti* and *Brugia* species, harbor rickettsial endobacteria of the genus *Wolbachia* as symbionts. Animal experiments have shown that the elimination of these endobacteria causes inhibition of embryogenesis, and with *Onchocerca ochengi* a macrofilaricidal effect. Trials with human onchocerciasis patients using doxycycline demonstrated a long-term sterilizing activity, opening up a new strategy for the control of filarial infections. Indications of antiwolbachial therapy against onchocerciasis are discussed.

Curr Opin Investig Drugs. 2002 Apr; 3(4): 533-7
A “typical” effect of tetracycline treatment on filarial nematodes: inhibition of embryogenesis (infertility)

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage</th>
<th>Host</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. pahangi</td>
<td>L_3</td>
<td>mosquito</td>
<td>inhibition of growth and migration</td>
</tr>
<tr>
<td>B. pahangi</td>
<td>pre-adult</td>
<td>gerbil</td>
<td>growth inhibition; infertility</td>
</tr>
<tr>
<td>L. sigmodontis</td>
<td>pre-adult/adult</td>
<td>mouse; gerbil; cotton rat</td>
<td>growth retardation; growth inhibition; infertility</td>
</tr>
<tr>
<td>D. immitis</td>
<td>adult</td>
<td>dog</td>
<td>infertility</td>
</tr>
<tr>
<td>W. bancrofti</td>
<td>adult</td>
<td>human</td>
<td>infertility</td>
</tr>
<tr>
<td>O. lienalis</td>
<td>microfilaria</td>
<td>mouse (as surrogate)</td>
<td>microfilaricidal</td>
</tr>
<tr>
<td>O. ochengi</td>
<td>adult/microfilaria</td>
<td>cattle</td>
<td>macrofilaricidal; microfilaricidal; infertility</td>
</tr>
<tr>
<td>O. volvulus</td>
<td>adult</td>
<td>human</td>
<td>infertility</td>
</tr>
<tr>
<td>A. viteae</td>
<td>pre-adult</td>
<td>gerbil; mult. rat</td>
<td>no effect</td>
</tr>
</tbody>
</table>

Effects of tetracyclines and derivates (oxytetracycline, doxycycline) on filarial nematodes (*in vivo*)
Effects of tetracyclines and derivates on filarial nematodes *(in vitro)*

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage</th>
<th>Location</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. gutturosa</td>
<td>adult</td>
<td>in vitro</td>
<td>inhibition of males motility*</td>
</tr>
<tr>
<td>B. malayi</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult°</td>
</tr>
<tr>
<td>B. malayi</td>
<td>mt/adult</td>
<td>in vitro</td>
<td>death of worms, infertility°</td>
</tr>
<tr>
<td>B. pahangi</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult°</td>
</tr>
<tr>
<td>D. immitis</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult°</td>
</tr>
</tbody>
</table>

* Townson et al. (2000); ° Smith and Rayan (2000); ° Rao and Well (2002)

Another antibiotic with remarkable antifilarial properties is rifampicin

- Microfilaricidal (*O. lienalis* in vivo)
- Inhibition of male motility (*O. gutturosa* in vitro)
- Infertility (*B. pahangi* in vivo)
- Reduction of worm development and filarial load (*L. sigmodontis* in vivo)

Other antibiotics have been tested with **limited antifilarial effects**: CHLORAMPHENICOL
- Or with **no antifilarial effects**: penicillin G, gentamicin, ciprofloxacin, erythromycin
A possible role for *Wolbachia* in filarial moult?

Tetracycline treatments appear to block the L₄-L₅ moult during *B. pahangi* development in vivo

(Casiraghi et al., 2002)

CONCLUSIONS

Wolbachia/WAMs are released from dying worms;

The host’s innate immune system responds with proinflammatory cytokines, followed by anti-inflammatory/regulatory cytokines;

The host’s adaptive immune system specifically recognizes WAMs with consequent ab formation and specific cell-mediated response (IFNγ);
CONCLUSIONS

By reducing the female worm fertility we can reduce the parasite transmission and Mf damage.

By reducing the WAM load treating infected hosts with tetracyclin/doxycyclin, can we prevent/eliminate the inflammatory response, thereby improving health status.
Antiparasitic drugs

The “ideal” antiparasitic drug should have a broad spectrum of activity against the different developmental stages of the parasite, have a wide margin of safety, be compatible with other compounds, and in veterinary medicine be easy to administer to a large number of animals, not require a long withholding periods because of residues, and be economical.
Anthelmintics:

- **Cholinesterase inhibitors**: organophosphates
- **Cholinesterase receptors**: imidazothiazoles and pyrimidines
- **Inhibitors of tubulin polymerization**: benzimidazoles and pro-BZD
- **Uncomplers of oxidative phosphorylation**: salicylanilides
- **Inhibitors of enzymes in the glycolytic pathway**: clorsulon

Anthelmintics:

- **Cell membrane depolarizers**:
 - muscle hyperpolarization: piperazine
 - acting in nematodes primarily at the interneuron-motoneuron interface: macrocyclic lactones (MLs)
Human and animal filarial infections

The treatment of bancroftian filariasis continues to rest on diethylcarbamazine, which reduces microfilaraemia and probably kills adult worms ...

In onchocerciasis, diethylcarbamazine is still the standard microfilaricide and suramin is still the standard macrofilaricide. This is not a happy state of affairs, both drugs having grave clinical deficiencies.

Campbell W.C., J. Parasitol. 1986

Ivermectin

The first attempts to use IVM as an antiparasitic compound for humans were in the ’80s:

- Tropical filarial infections
- Gastrintestinal nematode infections
- Human toxocariasis syndromes
- Human scabies and lice infection
The IVM was the first ML found active against internal parasites (nematodes) and external parasites (some insects and mange mites).

The IVM is a semisynthetic compound belonging to the family of avermectins (AVMs), discovered in 1976 throughout the fermentation of the soil microrganism Streptomyces avermitilis.

IVM is a mixture of AVM B_{1a} and AVM B_{1b}.

The IVM was first introduced onto the veterinary market in 1981.

The abamectin, AVM B_{1}, is particularly active against nematode parasites and was introduced onto the agriculture and veterinary market in 1985.

Other MLs used for treatment and control of endo- and ectoparasites in animals are doramectin, eprinomectin and selamectin, all belonging to the family of AVMs, and milbemycin oxime and moxidectin, belonging to the family of milbemycins (MBMs).
IVM efficacy against nematodes and arthropods took parasite control to a new level. For the first time, a single product, both safe and efficacious against the majority of economically-important internal and external parasites of all food-producing and companion animals, was made available. The amount of product required for activity was 10 to 100 times less than that of previous used products. Ivermectin showed an unprecedented high efficacy (often up to 100%) against inhibited, larval and adult stages of the major nematodes and larval and adult arthropods.

Since their discovery, MLs have exhibited selective toxicity, which defines an ideal anti-infective agent as one that has a chemical target in the microorganism causing infection, but either has no target or has no access to a target in the infected host making these compounds very safe and possible to use in potentially all mammalian hosts, reptiles, birds and fish.
It is likely that the entire family of AVMs and MBMs shares a common mode of action. In target organisms, the action is receptor mediated, and ligand-ligated chloride channels are the target proteins for this class of compounds. AVMs potentiate and/or directly activate arthropod and nematode glutamate-gated chloride channels. Modulation of other ligand-gated chloride channels, such as those gated by neurotransmitter γ-aminobutyric acid (GABA) may also be involved.

The consequence of the AVM-receptor interaction is an increased membrane permeability to chloride ions. In nematodes and arthropods, AVMs potentiate the ability of neurotransmitters such as glutamate and GABA to stimulate an influx of chloride ions into nerve cells resulting in loss of cell function.
Wolbachia endosymbionts: basic information

The presence of intracellular endosymbionts were microscopically observed in filarial nematodes at the beginning of the seventies (McLare et al, 1975; Kozek, 1977)

These bacteria were subsequently identified as Wolbachia...

... at the beginning of Wolbachia story in the filarial worms
• The first report of endosymbiont bacteria in filarial nematodes was in 1995, when the presence *Wolbachia* was demonstrated by molecular methods in *Dirofilaria immitis*.
• Afterwords, *Wolbachia* was found in many species of human and animal filarial parasites (*Onchocerca volvulus*, *Wuchereria bancrofti*, *Brugia malayi* and *D. repens*).
• This bacteria are philogenetically close to rickettsiae and are transovarial transmitted to microfilariae. Large amounts of bacteria are found in the cuticle of male and female adult nematodes, in female gonads and in embryos.

Most filarial worms that cause disease in humans and animals harbour Wolbachia

Onchocerca volvulus: river blindness/onchocercomas

Brugia malayi/Wuchereria bancrofti: lymphatic filariasis (acute/recurrent lymphangitis, elephantiasis, hydrocele)

Dirofilaria immitis: canine and feline heartworm disease
Can Wolbachia be involved in the pathogenesis of the filarial disease?

Wolbachia has been shown to be involved in the immunopathology of filarial infections:

- Crude extracts of *Dirofilaria* holding Wolbachia stimulate host monocytes to produce cytokines and receptor expression. Further, anti-WSP antibodies have been shown in *Dirofilaria* infected animals and humans.
- The injection of *Dirofilaria* crude extracts causes shock-like reaction; the reaction has not shown when extracts of filariae not hosting *Wolbachia* (such as *Acanthocheilonema vitae*) are injected.
- Wolbachia seems also to interfere on the host immune response making possible the long survival of the parasite in the host.
How does the filarial worm-infected host come into contact with Wolbachia?

- death of microfilariae/adult worms through:
 - natural attrition (caval syndrome)
 - pharmacological treatment

Host tissue

WAM, Dirofilaria and host immune response

WB of serum from cats with *D. immitis*

A control protein

B rWSP

Healthy cats *D. immitis*+ cats
How does Wolbachia interact with the immune system?

- LPS-like (B. malayi, O. volvulus)
- Wolbachia associated molecules (WAM)
- Wolbachia surface protein (WSP) (D. immitis, B. malayi)
- hsp60 (B. malayi, D. immitis)

PAMPs: pathogen-associated molecular patterns

- Toll-Like Receptor/PRR
- APC (DC, MΦ, monocytes)
- • production of reactive oxygen intermediates (NO)
- • production of pro-inflammatory cytokines
- • up-regulation of co-stimulatory molecules (adaptive immunity)
Since TLR2 was involved in the recognition of WSP ..., we next used bone marrow-derived mouse Mφi of the genotype TLR2-/- and compared their response to WSP with the reactivities of Mφi from wild-type mice. Stimulation of Mφi from wild-type mice with WSP in three separate experiments resulted in the release of high amounts of TNF-α while significantly reduced levels (41%) were found in supernatants of Mφi from TLR2-/- mice.

This result not only further suggests an important role of TLR2 in immune responses towards WSP, but also implies the involvement of TLR2-independent pathways...

ELISA with human sera on a recombinant protein of Wolbachia

(Wolbachia surface protein, WSP)

A 10 sera from patients with pulmonary nodules due to D.immitis
B 18 sera from clinically healthy humans living in endemic areas for D.immitis
C 14 sera from clinically healthy humans living in areas free from D.immitis

The Wolbachia/filarial worms symbiosis is obligate. The treatment with antibiotics effective against rickettsiae (such as tetracyclines and rifampicin), makes a dramatic decrease of Wolbachia in filarial body, damages the nematode by blocking its development, embryogenesis and production of microfilariae. Clinical studies have shown the efficacy of tetracyclines in decreasing the production of circulating mf in also in humans.
Antibiotics for the treatment of onchocerciasis and other filarial infections.

Hoerauf A, Adjei O, Buttner DW.

Department of Helminthology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. hoerauf@bni.uni-hamburg.de

More effective drugs are needed for the treatment of human filarial diseases and the elimination of these infections as a public health problem. The drugs must either kill or sterilize adult worms. The relevant filariae, *Onchocerca volvulus*, *Wuchereria bancrofti* and *Brugia* species, harbor rickettsial endobacteria of the genus *Wolbachia* as symbionts. Animal experiments have shown that the elimination of these endobacteria causes inhibition of embryogenesis, and with *Onchocerca ochengi* a macrofilaricidal effect. Trials with human onchocerciasis patients using doxycycline demonstrated a long-term sterilizing activity, opening up a new strategy for the control of filarial infections. Indications of anti-wolbachial therapy against onchocerciasis are discussed.

Curr Opin Investig Drugs. 2002 Apr; 3(4): 533-7
A “typical” effect of tetracycline treatment on filarial nematodes: inhibition of embryogenesis (infertility)

Brugia pahangi control (female) Brugia pahangi treated (female)

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage</th>
<th>Host</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. pahangi</td>
<td>L₃</td>
<td>mosquito</td>
<td>inhibition of growth and migration</td>
</tr>
<tr>
<td>B. pahangi</td>
<td>pre-adult</td>
<td>gerbil</td>
<td>growth inhibition; infertility</td>
</tr>
<tr>
<td>L. sigmodontis</td>
<td>pre-adult/adult</td>
<td>mouse; gerbil; cotton rat</td>
<td>growth retardation; growth inhibition; infertility</td>
</tr>
<tr>
<td>D. immitis</td>
<td>adult</td>
<td>dog</td>
<td>infertility</td>
</tr>
<tr>
<td>W. bancrofti</td>
<td>adult</td>
<td>human</td>
<td>infertility</td>
</tr>
<tr>
<td>O. lienalis</td>
<td>microfilaria</td>
<td>mouse</td>
<td>microfilarical</td>
</tr>
<tr>
<td>(as surrogate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. ochengi</td>
<td>adult/microfilaria</td>
<td>cattle</td>
<td>macrofilarical; microfilarical; infertility</td>
</tr>
<tr>
<td>O. volvulus</td>
<td>adult</td>
<td>human</td>
<td>infertility</td>
</tr>
<tr>
<td>A. viteae</td>
<td>pre-adult</td>
<td>gerbil; mult. rat</td>
<td>no effect</td>
</tr>
</tbody>
</table>
Effects of tetracyclines and derivates on filarial nematodes *(in vitro)*

<table>
<thead>
<tr>
<th>Species</th>
<th>Stage</th>
<th>Location</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. gutturosa</td>
<td>adult</td>
<td>in vitro</td>
<td>inhibition of males motility<sup>a</sup></td>
</tr>
<tr>
<td>B. malayi</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult<sup>b</sup></td>
</tr>
<tr>
<td>B. malayi</td>
<td>mt/adult</td>
<td>in vitro</td>
<td>death of worms, infertility<sup>c</sup></td>
</tr>
<tr>
<td>B. pahangi</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult<sup>b</sup></td>
</tr>
<tr>
<td>D. immitis</td>
<td>L₃</td>
<td>in vitro</td>
<td>inhibition of L₃-L₄ moult<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Townson et al. (2000); ^b Smith and Rayan (2000); ^c Rao and Well (2002)

Another antibiotic with remarkable antifilarial properties is rifampicin

- ✔ Microfilaricidal (*O. lienalis* in vivo)
- ✔ Inhibition of male motility (*O. gutturosa* in vitro)
- ✔ Infertility (*B. pahangi* in vivo)
- ✔ Reduction of worm development and filarial load (*L. sigmodontis* in vivo)

Other antibiotics have been tested with **limited antifilarial effects**:
- CHLORAMPHENICOL

Or with **no antifilarial effects**:
- penicillin G, gentamicin, ciprofloxacin, erythromycin
A possible role for *Wolbachia* in filarial moult?

Tetracycline treatments appear to block the L$_4$-L$_5$ moult during *B. pahangi* development in vivo

(Casiraghi et al., 2002)

CONCLUSIONS

Wolbachia/WAMs are released from dying worms;

The host’s innate immune system responds with proinflammatory cytokines, followed by anti-inflammatory/regulatory cytokines;

The host’s adaptive immune system specifically recognizes WAMs with consequent ab formation and specific cell-mediated response (IFNγ);
CONCLUSIONS

By reducing the female worm fertility we can reduce the parasite trasmissione and Mf damage.

By reducing the WAM load treating infected hosts with tetracyclin/doxycyclin, can we prevent/eliminate the inflammatory response, thereby improving health status.