TRIVIAL INTERSECTION OF σ-FIELDS
AND GIBBS SAMPLING

PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

Abstract. Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{N} the class of those $F \in \mathcal{F}$ satisfying $P(F) \in \{0, 1\}$. For each $\mathcal{G} \subseteq \mathcal{F}$, define $\mathcal{G} = \sigma(\mathcal{G} \cup \mathcal{N})$. Necessary and sufficient conditions for $A \cap B = A \cap B$, where $A, B \subseteq \mathcal{F}$ are sub-σ-fields, are given. These conditions are then applied to the (two component) Gibbs sampler. Suppose X and Y are the coordinate projections on $(\Omega, \mathcal{F}) = (X \times Y, U \otimes V)$ where (X, U) and (Y, V) are measurable spaces. Let $(X_n, Y_n)_{n \geq 0}$ be the Gibbs-chain for P. Then, the SLLN holds for (X_n, Y_n) if and only if $\sigma(X) \cap \sigma(Y) = \mathcal{N}$, or equivalently if and only if $P(X \in U) P(Y \in V) = 0$ whenever $U \in U$, $V \in V$ and $P(U \times V) = P(U^c \times V^c) = 0$. The latter condition is also equivalent to ergodicity of (X_n, Y_n), on a certain subset $S_0 \subseteq \Omega$, in case $\mathcal{F} = U \otimes V$ is countably generated and P absolutely continuous with respect to a product measure.

1. The problem

Let (Ω, \mathcal{F}, P) be a probability space and $A, B \subseteq \mathcal{F}$ sub-σ-fields. Letting $\mathcal{N} = \{F \in \mathcal{F} : P(F) \in \{0, 1\}\}$ and $\mathcal{G} = \sigma(\mathcal{G} \cup \mathcal{N})$,
for any subclass $\mathcal{G} \subseteq \mathcal{F}$, we aim at giving conditions for

\[(1) \quad A \cap \mathcal{B} = A \cap \mathcal{B}. \]

2. Motivations

Apart from its possible theoretical interest, there are three (non independent) reasons for investigating (1).

2.1. Iterated conditional expectations. Given a real random variable Z satisfying $E(|Z| \log(1 + |Z|)) < \infty$, define $Z_0 = Z$ and $\mathcal{G}_n = A$ or $\mathcal{G}_n = B$ as n is even or odd. By a classical result of Burkholder-Chow [1] and Burkholder [3], one obtains

\[(2) \quad Z_n := E(Z_{n-1} | \mathcal{G}_n) \rightarrow E(Z | A \cap B) \quad \text{a.s.}, \]

A natural question is whether $E(Z | A \cap B)$ can be taken as the limit in (2), and the answer is straightforward:

Corollary 2.1. $Z_n \rightarrow E(Z | A \cap B) \quad \text{a.s.},$ for all real random variables Z such that $E(|Z| \log(1 + |Z|)) < \infty$, if and only if condition (1) holds.

2000 Mathematics Subject Classification. 60A05, 60A10, 60J22, 65C05.
Key words and phrases. Ergodicity, Gibbs sampler, Iterated conditional expectation, Markov chain, Strong law of large numbers, Sufficiency.
Proof. Under (1), just note that $E(Z \mid \mathcal{A} \cap \mathcal{B})$ is a version of $E(Z \mid \overline{\mathcal{A} \cap \mathcal{B}})$. Conversely, suppose $Z_n \to E(Z \mid \mathcal{A} \cap \mathcal{B})$ a.s. for all Z. Since $\overline{\mathcal{A} \cap \mathcal{B}} \subset \overline{\mathcal{A} \cap \mathcal{B}}$, it suffices to prove that $\overline{\mathcal{A} \cap \mathcal{B}} \subset \overline{\mathcal{A} \cap \mathcal{B}}$. Given $F \in \overline{\mathcal{A} \cap \mathcal{B}}$, condition (2) implies $I_F = E(I_F \mid \overline{\mathcal{A} \cap \mathcal{B}}) = E(I_F \mid \mathcal{A} \cap \mathcal{B})$ a.s.. Letting $F_0 = \{E(I_F \mid \mathcal{A} \cap \mathcal{B}) \neq I_F\}$, and noting that $P(F_0) = 0$, yields

$$F = (F \cap F_0) \cup \{E(I_F \mid \mathcal{A} \cap \mathcal{B}) = 1\} \cap F_0^c \in \overline{\mathcal{A} \cap \mathcal{B}}.$$

\[\square\]

As an application, think of a problem where $E(\cdot \mid \mathcal{A})$ and $E(\cdot \mid \mathcal{B})$ are easy to evaluate while $E(\cdot \mid \mathcal{A} \cap \mathcal{B})$ is not. In order to estimate $E(Z \mid \mathcal{A} \cap \mathcal{B})$, one strategy is using condition (2), but this is possible precisely when (1) holds.

2.2. Sufficiency. Suppose that, rather than a single probability measure P, we are given a collection \mathcal{M} of probability measures Q on (Ω, \mathcal{F}). For any $\mathcal{G} \subset \mathcal{F}$ define $\mathcal{G}_M = \sigma(\mathcal{G} \cup \mathcal{N}_M)$, where \mathcal{N}_M is the class of those $F \in \mathcal{F}$ such that $Q(F) = 0$ for all $Q \in \mathcal{M}$ or $Q(F) = 1$ for all $Q \in \mathcal{M}$. In this framework, condition (1) turns into

$$(1^*) \quad \mathcal{A}_M \cap \mathcal{B}_M = (\mathcal{A} \cap \mathcal{B})_M.$$

A sub-σ-field $\mathcal{G} \subset \mathcal{F}$ is sufficient (for M) in case, for each $F \in \mathcal{F}$, there is a \mathcal{G}-measurable function $f : \Omega \to \mathbb{R}$ which is a version of $E_Q(I_F \mid \mathcal{G})$ for all $Q \in \mathcal{M}$.

Generally, sufficiency of both \mathcal{A} and \mathcal{B} does not imply that of $\mathcal{A} \cap \mathcal{B}$. By Theorem 4 of [2], however, $\mathcal{A} \cap \mathcal{B}$ is sufficient provided \mathcal{A} and \mathcal{B} are sufficient and at least one of them includes \mathcal{N}_M. This fact implies:

Corollary 2.2. $\mathcal{A} \cap \mathcal{B}$ is sufficient whenever \mathcal{A} and \mathcal{B} are sufficient and condition (1^*) holds.

Proof. We first verify that \mathcal{G} is sufficient if and only if \mathcal{G}_M is sufficient, where $\mathcal{G} \subset \mathcal{F}$ is any sub-σ-field. The "only if" part is trivial. Suppose \mathcal{G}_M is sufficient, fix $F \in \mathcal{F}$, and take a \mathcal{G}_M-measurable function f which is a version of $E_Q(I_F \mid \mathcal{G}_M)$ for all $Q \in \mathcal{M}$. Since $\mathcal{G}_M = \{F \in \mathcal{F} : \text{there is } G \in \mathcal{G} \text{ such that } Q(F \Delta G) = 0 \text{ for all } Q \in \mathcal{M}\}$, for each n there is a \mathcal{G}-measurable function ϕ_n such that $Q(|f - \phi_n| < \frac{1}{n}) = 1$ for all $Q \in \mathcal{M}$. For $\omega \in \Omega$, define $\phi(\omega) = \lim_n \phi_n(\omega)$ if the limit exists and $\phi(\omega) = 0$ otherwise. Then, ϕ is \mathcal{G}-measurable and $Q(f = \phi) = 1$ for all $Q \in \mathcal{M}$. Thus, ϕ is a version of $E_Q(I_F \mid \mathcal{G})$ for all $Q \in \mathcal{M}$, which shows that \mathcal{G} is sufficient. Next, since \mathcal{A} and \mathcal{B} are sufficient, \mathcal{A}_M and \mathcal{B}_M are still sufficient, and thus $(\mathcal{A}_M \cap \mathcal{B}_M) = \mathcal{A}_M \cap \mathcal{B}_M$ is sufficient by Theorem 4 of [2]. Therefore, $\mathcal{A} \cap \mathcal{B}$ is sufficient. \[\square\]

2.3. Two component Gibbs sampler. Suppose $(\Omega, \mathcal{F}) = (X \times Y, \mathcal{U} \otimes \mathcal{V})$ is the product of two measurable spaces (X, \mathcal{U}) and (Y, \mathcal{V}) and let $X : \Omega \to X$, $Y : \Omega \to Y$ be the coordinate projections. Suppose also that regular versions of the conditional distribution of Y given X and X given Y are available under P (precise definitions are given in Section 4). Roughly speaking, the Gibbs-chain $(X_n, Y_n)_{n \geq 0}$ can be described as follows. Starting from $\omega = (x, y)$, the next state $\omega^* = (x^*, y^*)$ is obtained by first choosing y^* from the conditional distribution of Y given $X = x$ and then x^* from the conditional distribution of X given $Y = y^*$. Iterating this procedure produces an homogeneous Markov chain (X_n, Y_n) with
stationary distribution P. Let P denote the law of such a chain when $(X_0, Y_0) \sim P$, and let

$$m_n(\phi) = \frac{1}{n} \sum_{i=0}^{n-1} \phi(X_i, Y_i)$$

for each function $\phi : \Omega \to \mathbb{R}$.

In real problems, (X_n, Y_n) is constructed mainly for sampling from P. To this end, it is crucial that the SLLN is available under P, that is

$$(3) \quad m_n(\phi) \to \int \phi \, dP, \quad P\text{-a.s., for all } \phi \in L_1(P).$$

Note that, under (3), for each probability measure $Q \ll P$ one also obtains

$$m_n(\phi) \to \int \phi \, dP, \quad Q\text{-a.s., for each } \phi \in L_1(P)$$

where Q is the law of the chain (X_n, Y_n) when $(X_0, Y_0) \sim Q$.

In addition to (3), various other properties are usually requested to (X_n, Y_n), mainly ergodicity, CLT and the convergence rate. Nevertheless, condition (3) seems (to us) a fundamental one. It is a sort of necessary condition, since the Gibbs sampling procedure does not make sense without (3). Accordingly, we say that P is Gibbs-admissible in case (3) holds.

But what about condition (1) ? The link is that P turns out to be Gibbs-admissible precisely when

$$\sigma(X) \cap \sigma(Y) = \mathcal{N} = \sigma(X) \cap \sigma(Y).$$

In other terms, the Gibbs sampling procedure makes sense for P (in the SLLN-sense) if and only if P meets condition (1) with $A = \sigma(X)$ and $B = \sigma(Y)$.

In fact, something more is true. Let K be the transition kernel of (X_n, Y_n) and $S_0 = \{\omega \in \Omega : K(\omega, \cdot) \ll P\}$. Under mild conditions (\mathcal{F} countably generated and P absolutely continuous with respect to a product measure), one obtains $P(S_0) = 1$ and

$$\sigma(X) \cap \sigma(Y) = \mathcal{N} \iff (X_n, Y_n) \text{ is ergodic on } S_0.$$

For proving the previous statements, a key ingredient is a result of Diaconis et al., connecting the Gibbs-chain (X_n, Y_n) with Burkholder-Chow result of Subsection 2.1; see Theorem 4.1 of [5]. Indeed, $\sigma(X) \cap \sigma(Y) = \mathcal{N}$ appears as an assumption in various results from [5] (Corollary 3.1, Propositions 5.1, 5.2 and 5.3). Also, investigating $\sigma(X) \cap \sigma(Y) = \mathcal{N}$ was suggested to us by Persi Diaconis.

One of our main results (Corollary 3.5) is that $\sigma(X) \cap \sigma(Y) = \mathcal{N}$ is equivalent to the following property of P:

$$P(X \in U) = 0 \text{ or } P(Y \in V) = 0 \quad \text{whenever}$$

$$U \in \mathcal{U}, V \in \mathcal{V} \text{ and } P(U \times V) = P(U^c \times V^c) = 0.$$

This paper is organized into two parts. Section 3 gives general results on conditions (1) and (1*). It includes characterizations, examples, and various working sufficient conditions in case P is absolutely continuous with respect to a product measure. The main results are Theorem 3.1 and Corollaries 3.5, 3.7 and 3.9. Section 4 deals with the Gibbs sampler and contains the material sketched above. The main results are Theorems 4.2, 4.3 and 4.4.
3. General Results

This section is split into three subsections. All examples are postponed to the last one.

3.1. Necessary and sufficient conditions. Condition (1) admits a surprisingly simple characterization:

Theorem 3.1. Let
\[J = \{ A \cap B : A \in \mathcal{A}, B \in \mathcal{B} \text{ and } P(A \cap B) + P(A^c \cap B^c) = 1 \} . \]
Then, \(\mathcal{A} \cap \mathcal{B} = J \). Moreover, \(\mathcal{A} \cap \mathcal{B} = \overline{\mathcal{A} \cap \mathcal{B}} \) if and only if

\[A \in \mathcal{A}, B \in \mathcal{B} \text{ and } P(A \cap B) = P(A^c \cap B^c) = 0 \]
implies \(P(A \Delta D) = 0 \) or \(P(B \Delta D) = 0 \) for some \(D \in \mathcal{A} \cap \mathcal{B} \).

Proof. First note that, for any sub-\(\sigma \)-field \(G \subset \mathcal{F} \), one has
\[\mathcal{G} = \{ F \in \mathcal{F} : P(F \Delta G) = 0 \text{ for some } G \in \mathcal{G} \} . \]
Let \(F \in \overline{\mathcal{A} \cap \mathcal{B}} \). Then, \(P(\Delta \mathcal{F}) = P(\Delta \mathcal{B}) = 0 \), for some \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \), and
\[1 - P(A \cap B) - P(A^c \cap B^c) = P(\Delta \mathcal{A} \cap \mathcal{B}) \leq P(\Delta \mathcal{A} \cap \mathcal{B}) + P(\Delta \mathcal{B} \cap \mathcal{F}) = 0 \]
Hence, \(J := A \cap B \in \mathcal{J} \). Since \(P(F \Delta J) \leq P(\Delta \mathcal{F}) + P(\Delta \mathcal{B}) = 0 \), then \(F \in \mathcal{J} \).

Conversely, let \(J \in \mathcal{A} \cap \mathcal{B} \) where \(A \in \mathcal{A}, B \in \mathcal{B} \) and \(P(A \cap B) = P(A^c \cap B^c) = 1 \). Define \(H = (A \cap B) \cup (A^c \cap B^c) \). Since \(P(H) = 1 \) and \(J = A \cap H = B \cap H \), it follows that \(J \in \mathcal{A} \cap \mathcal{B} \). Therefore, \(\mathcal{A} \cap \mathcal{B} = J \). In particular, \(\mathcal{A} \cap \mathcal{B} = \overline{\mathcal{A} \cap \mathcal{B}} \) if and only if \(J \subset \overline{\mathcal{A} \cap \mathcal{B}} \), and thus it remains only to show that \(J \subset \overline{\mathcal{A} \cap \mathcal{B}} \) is equivalent to condition (4). Suppose (4) holds and fix \(J \in \mathcal{J} \). Then, \(J \) can be written as \(J = A \cap B \) for some \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \) with \(P(A \cap B) = P(A^c \cap B^c) = 0 \). By (4), it follows that \(A \in \overline{\mathcal{A} \cap \mathcal{B}} \) or \(B \in \overline{\mathcal{A} \cap \mathcal{B}} \), say \(A \in \overline{\mathcal{A} \cap \mathcal{B}} \). Since \(P(A \cap B) = 0 \), one obtains \(J = A \cap B = A \cap B = A \cap B \) \(\in \overline{\mathcal{A} \cap \mathcal{B}} \). Finally, suppose \(J \subset \overline{\mathcal{A} \cap \mathcal{B}} \) and fix \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \) with \(P(A \cap B) = P(A^c \cap B^c) = 0 \). Since \(A \cap B \in \mathcal{J} \subset \overline{\mathcal{A} \cap \mathcal{B}} \) and \(P(A \cap B) = 0 \), then \(A = (A \cap B) \cup (A \cap B) \in \overline{\mathcal{A} \cap \mathcal{B}} \), that is, \(P(\Delta \mathcal{A} \cap \mathcal{B}) = 0 \) for some \(D \in \mathcal{A} \cap \mathcal{B} \).

The simple argument which leads to Theorem 3.1 works in some other situations. Two of them are sufficiency and the case of \(k \geq 2 \) sub-\(\sigma \)-fields. Next Theorems 3.2 and 3.3 are stated without proofs, since they are quite analogous to that of Theorem 3.1, and are never used in the rest of the paper.

Theorem 3.2. In the notation of Subsection 2.2, \(\mathcal{A}_M \cap \mathcal{B}_M = \{ A \cap B \} \) if and only if

\[A \in \mathcal{A}, B \in \mathcal{B} \text{ and } Q(A \cap B) = Q(A^c \cap B^c) = 0 \text{ for all } Q \in M \]
implies the existence of \(D \in \mathcal{A} \cap \mathcal{B} \) such that
\[Q(\Delta D) = 0 \text{ for all } Q \in M \text{ or } Q(\Delta D) = 0 \text{ for all } Q \in M \]

By Theorem 3.2 and Corollary 2.2, \(\mathcal{A} \cap \mathcal{B} \) is sufficient whenever \(\mathcal{A} \) and \(\mathcal{B} \) are sufficient and condition (4*) holds.

Theorem 3.3. Let \(\mathcal{A}_1, \ldots, \mathcal{A}_k \subset \mathcal{F} \) be sub-\(\sigma \)-fields, \(k \geq 2 \). Then,
\[\cap_{i=1}^k \overline{\mathcal{A}_i} = \overline{\cap_{i=1}^k \mathcal{A}_i} \]
if and only if
\[A_1 \in A_1, \ldots, A_k \in A_k \quad \text{and} \quad P(\cap_{i=1}^k A_i) + P(\cap_{i=1}^k A_i^c) = 1 \]
implies \(P(A_i \Delta D) = 0 \) for some \(i \) and \(D \in \cap_{i=1}^k A_i \).

Let us come back to the main concern of this paper, that is, a single probability measure \(P \) and two sub-\(\sigma \)-fields \(A \) and \(B \). Condition (4) of Theorem 3.1 trivially holds provided
\[
(5) \quad A \in A, B \in B \quad \text{and} \quad P(A \cap B) = P(A^c \cap B^c) = 0
\]
implies \(P(A) = 0 \) or \(P(B) = 0 \).

Generally, condition (5) is stronger than (4) (just take \(A = B \), so that (4) trivially holds, and choose \(P \) such that (5) fails). However, (4) and (5) are equivalent in a significant particular case.

Corollary 3.4. If \(A \cap B \subset N \), then
\[
A \cap B = N \iff \text{condition (4) holds} \iff \text{condition (5) holds}.
\]

Proof. Suppose (4) holds and fix \(A \in A, B \in B \) with \(P(A \cap B) = P(A^c \cap B^c) = 0 \). Then, \(P(A \Delta D)P(B \Delta D) = 0 \) for some \(D \in A \cap B \), say \(P(\Delta D) = 0 \). Since \(A \cap B \subset N \), one obtains \(P(A) = P(D) \in \{0,1\} \). If \(P(A) = 0 \), then \(P(A)P(B) = 0 \). If \(P(A) = 1 \), then \(P(B) = P(A \cap B) = 0 \) and again \(P(A)P(B) = 0 \). Thus, (5) holds. Since \(A \cap B = N \), an application of Theorem 3.1 concludes the proof. \(\square \)

In the sequel, we deal with product measurable spaces. Let \((X, \mathcal{U}) \) and \((Y, \mathcal{V}) \) be measurable spaces and
\[
(\Omega, \mathcal{F}) = (X \times Y, \mathcal{U} \otimes \mathcal{V}), \quad X(x, y) = x, \quad Y(x, y) = y,
\]
where \((x, y) \in X \times Y \). We focus on \(A = \sigma(X) \) and \(B = \sigma(Y) \). In this case, since \(\sigma(X) \cap \sigma(Y) = \emptyset, \Omega \), Corollary 3.4 reduces to

Corollary 3.5. \(\sigma(X) \cap \sigma(Y) = N \) if and only if
\[
(6) \quad U \in \mathcal{U}, V \in \mathcal{V} \quad \text{and} \quad P(U \times V) = P(U^c \times V^c) = 0
\]
implies \(P(X \in U) = 0 \) or \(P(Y \in V) = 0 \).

By Corollary 3.5, if \(\sigma(X) \cap \sigma(Y) \neq N \), then \(\sigma(X) \cap \sigma(Y) \) includes a rectangle \(U \times V \) such that \(U \in \mathcal{U}, V \in \mathcal{V} \) and \(0 < P(U \times V) < 1 \). This fact implies a first sufficient condition for \(\sigma(X) \cap \sigma(Y) = N \).

Corollary 3.6. For \(\sigma(X) \cap \sigma(Y) = N \), it is sufficient that
\[
(7) \quad E(E(I_{U \times V} \mid \sigma(X)) \mid \sigma(Y)) + E(E(I_{U \times V} \mid \sigma(Y)) \mid \sigma(X)) > 0 \text{ a.s.}
\]
whenever \(U \in \mathcal{U}, V \in \mathcal{V} \) and \(0 < P(U \times V) < 1 \).

Proof. Let \(U \in \mathcal{U} \) and \(V \in \mathcal{V} \). If \(U \times V \in \sigma(X) \cap \sigma(Y) \), then
\[
E(E(I_{U \times V} \mid \sigma(X)) \mid \sigma(Y)) + E(E(I_{U \times V} \mid \sigma(Y)) \mid \sigma(X)) = 2I_{U \times V} \text{ a.s.}
\]
Thus, (7) implies \(U \times V \notin \sigma(X) \cap \sigma(Y) \) in case \(0 < P(U \times V) < 1 \). \(\square \)
3.2. Sufficient conditions in case \(P \) is absolutely continuous with respect to a product measure. In real problems, \(P \) usually has a density with respect to some product measure. Let \(\mu \) and \(\nu \) be \(\sigma \)-finite measures on \(U \) and \(V \), respectively. In this subsection, \(P \ll \mu \times \nu \) and \(f \) is a version of the density of \(P \) with respect to \(\mu \times \nu \).

Corollary 3.7. For \(\overline{\sigma(X)} \cap \overline{\sigma(Y)} = N \), it is sufficient that \(P \ll \mu \times \nu \) and
\[
(U_0 \times \mathcal{Y}) \cup (X \times V_0) \supset \{ f > 0 \} \supset U_0 \times V_0
\]
for some \(U_0 \in \mathcal{U} \) and \(V_0 \in \mathcal{V} \) such that \(P(U_0 \times V_0) > 0 \).

Proof. By Corollary 3.5, it suffices to prove condition (6). Let \(U \in \mathcal{U} \) and \(V \in \mathcal{V} \) be such that \(P(U \times V) = P(U^c \times V^c) = 0 \). Since \(f > 0 \) on \(U_0 \times V_0 \) and
\[
\int_{U \cap U_0 \times V \cap V_0} f \, d(\mu \times \nu) = P((U \cap U_0) \times (V \cap V_0)) \leq P(U \times V) = 0,
\]
it follows that
\[
\mu(U \cap U_0) \nu(V \cap V_0) = \mu(U \cap U_0) \times (V \cap V_0) = 0,
\]
say \(\mu(U \cap U_0) = 0 \). Similarly, \(P(U^c \times V^c) = 0 \) and \(f > 0 \) on \(U_0 \times V_0 \) imply \(\mu(U_0 - U) \nu(V_0 - V) = 0 \). Since \(P(X \in U_0) > 0 \) and \(\mu(U \cap U_0) = 0 \), it must be \(\mu(U_0 - U) > 0 \) and thus \(\nu(V_0 - V) > 0 \). Let \(H_0 = (U_0 \times \mathcal{Y}) \cup (X \times V_0) \). Since \(P(H_0) = 1 \) and \(P(X \in U \cap U_0) = P(Y \in V_0 - V) = 0 \), one obtains
\[
P(X \in U) = P((X \in U - U_0) \cap H_0) = P((U - U_0) \times V_0)
\]
\[
= P((U - U_0) \times (V \cap V_0)) \leq P(U \times V) = 0.
\]
Therefore, condition (6) holds. \(\square \)

Corollary 3.7 applies in particular if \(\{ f > 0 \} \supset U_0 \times \mathcal{Y} \) for some \(U_0 \in \mathcal{U} \) and \(P(X \in U_0) > 0 \) (just take \(V_0 = \mathcal{Y} \)). Likewise, it applies if \(\{ f > 0 \} \supset X \times V_0 \) for some \(V_0 \in \mathcal{V} \) such that \(P(Y \in V_0) > 0 \).

Let \(\mu_0 \) be a probability measure on \(U \) equivalent to \(\mu \), i.e., \(\mu_0 \ll \mu \) and \(\mu \ll \mu_0 \). Similarly, let \(\nu_0 \) be a probability measure on \(V \) equivalent to \(\nu \). Then, \(\mu_0 \times \nu_0 \) is equivalent to \(\mu \times \nu \) and, for each \(H \in \mathcal{F} \) with \(\mu \times \nu(H) > 0 \), one can define the probability measure
\[
Q_H(F) = \frac{\mu_0 \times \nu_0(F \cap H)}{\mu_0 \times \nu_0(H)}, \quad F \in \mathcal{F}.
\]
Say that \(H \) has the trivial intersection property, or briefly that \(H \) is TIP, in case \(H \in \mathcal{F} \), \(\mu \times \nu(H) > 0 \) and \(\sigma(X) \cap \sigma(Y) = N \) holds when \(P = Q_H \). Note that whether or not \(H \) is TIP does not depend on the choice of \(\mu_0 \) and \(\nu_0 \). Note also that
\[
\sigma(X) \cap \sigma(Y) = N \iff \text{the set } \{ f > 0 \} \text{ is TIP}.
\]

Corollary 3.8. Suppose \(P \ll \mu \times \nu \) and \(\{ f > 0 \} = \cup_n H_n \), where \(H_1 \subset H_2 \subset \ldots \) is an increasing sequence of TIP sets. Then, \(\sigma(X) \cap \sigma(Y) = N \).

Proof. Suppose \(H_n \in \mathcal{F} \) and \(\mu \times \nu(H_n) > 0 \) for all \(n \) and \(H_1 \subset H_2 \subset \ldots \). Suppose also that \(H := \cup_n H_n \) is not TIP. By Corollary 3.5 (applied to \(Q_H \)), there are \(U \in \mathcal{U} \) and \(V \in \mathcal{V} \) such that
\[
Q_H(U \times V) = Q_H(U^c \times V^c) = 0, \quad Q_H(U \times V^c) > 0, \quad Q_H(U^c \times V) > 0.
\]
Since \(Q_{H_n}(F) \to Q_H(F) \) for all \(F \in \mathcal{F} \), there is \(n_0 \) such that \(Q_{H_n}(U \times V) > 0 \) and \(Q_{H_n}(U^c \times V) > 0 \) for all \(n \geq n_0 \). Fix \(n \geq n_0 \). Since \(Q_{H_n} \ll Q_H \) (due to \(H_n \subset H \)), one obtains

\[
Q_{H_n}(U \times V) = Q_{H_n}(U^c \times V^c) = 0, \quad Q_{H_n}(U \times V^c) > 0, \quad Q_{H_n}(U^c \times V) > 0.
\]

Hence, condition (6) fails for \(Q_{H_n} \) and Corollary 3.5 implies that \(H_n \) is not TIP. □

In order to generalize Corollary 3.8, one more piece of terminology is useful. Given two sets \(F, G \in \mathcal{F} \), say that \(F \) communicates with \(G \) in case at least one of the following conditions (i) and (ii) holds:

(i) There is \(V_0 \in \mathcal{V} \) with \(\nu(V_0) > 0 \) and \(\mu(F^y) > 0 \) for all \(y \in V_0 \);
(ii) There is \(U_0 \in \mathcal{U} \) with \(\mu(U_0) > 0 \) and \(\nu(F_x) > 0 \) for all \(x \in U_0 \);

where \(F_x = \{ y \in Y : (x, y) \in F \} \) and \(F^y = \{ x \in X : (x, y) \in F \} \) denote the sections of \(F \).

Corollary 3.9. Suppose \(P \ll \mu \times \nu \) and \(\{ f > 0 \} = \bigcup_n H_n \), where \(H_n \) is TIP and \(H_n \) communicates with \(H_{n+1} \) for each \(n \). Then, \(\overline{\sigma(X)} \cap \overline{\sigma(Y)} = N \).

Proof. It is enough to prove that \(F \cup G \) is TIP whenever \(F \) and \(G \) are TIP and \(F \) communicates with \(G \). In that case, since \(\bigcup_{i=1}^{n-1} H_i \) communicates with \(H_n \), a simple induction implies that \(\bigcup_{i=1}^n H_i \) is TIP for all \(n \). Hence, \(\overline{\sigma(X)} \cap \overline{\sigma(Y)} = N \) by Corollary 3.8.

Suppose \(F \) and \(G \) are TIP and condition (i) holds (the proof is the same if (ii) holds). Set \(H = F \cup G \) and fix \(U \in \mathcal{U}, V \in \mathcal{V} \) with \(Q_H(U \times V) = Q_H(U^c \times V^c) = 0 \). Since \(F \) and \(G \) are TIP and

\[
Q_F(U \times V) = Q_F(U^c \times V^c) = Q_G(U \times V) = Q_G(U^c \times V^c) = 0,
\]

one obtains

\[
Q_F(X \in U) = 0 \quad \text{or} \quad Q_F(Y \in V) = 0, \quad \text{and} \quad Q_G(X \in U) = 0 \quad \text{or} \quad Q_G(Y \in V) = 0.
\]

Let \(V_0 \) be as in condition (i). If \(Q_F(X \in U) = 0 \), then \(Q_F(Y \in V) = 1 \). By (i) and since \(\mu_0 \) and \(\nu_0 \) are equivalent to \(\mu \) and \(\nu \), it follows that

\[
Q_F(Y \in V \cap V_0) = Q_F(Y \in V_0) = \int_{V \cap V_0} \mu_0(F^y) \nu_0(dy) > 0.
\]

Hence \(\nu_0(V \cap V_0) > 0 \), and this implies

\[
Q_G(Y \in V) \geq Q_G(Y \in V \cap V_0) = \int_{V \cap V_0} \mu_0(G^y) \nu_0(dy) > 0.
\]

Therefore, \(Q_F(X \in U) = 0 \) implies \(Q_G(Y \in V) > 0 \), and similarly \(Q_G(X \in U) = 0 \) implies \(Q_F(Y \in V) > 0 \). It follows that \(Q_F(X \in U) = Q_G(X \in U) = 0 \) or \(Q_F(Y \in V) = Q_G(Y \in V) = 0 \), which implies \(Q_H(X \in U) = 0 \) or \(Q_H(Y \in V) = 0 \). Thus, condition (6) holds for \(Q_H \), and \(H = F \cup G \) is TIP by Corollary 3.5. □

3.3. Examples. In this subsection, \(X \) and \(Y \) are topological spaces and \(\mathcal{U} \) and \(\mathcal{V} \) the corresponding Borel \(\sigma \)-fields. Moreover, \(\mu \) and \(\nu \) have full topological support (i.e., they are strictly positive on nonempty open sets) and \(P \) has a density \(f \) with respect to \(\mu \times \nu \).

We note that, since \(\mu \) and \(\nu \) have full topological support, \(F \) communicates with \(G \) whenever \(F, G \in \mathcal{F} \) and \(F \cap G \) has nonempty interior. Further, by Corollary 3.9
(see also its proof), $F \cup G$ is TIP whenever F and G are TIP and F communicates with G.

Example 3.10. Let \mathcal{X} and \mathcal{Y} be second countable topological spaces.

If $\{f > 0\}$ is open and connected, then $\sigma(\mathcal{X}) \cap \sigma(\mathcal{Y}) = \mathcal{N}$.

Suppose in fact that $H \subseteq \Omega$ is open and connected. Since H is open, $H = \bigcup_i H_i$ where each H_i is open and TIP (for instance, take the H_i as open rectangles). For $\omega_1, \omega_2 \in H$, say that $\omega_1 \sim \omega_2$ in case there are a finite number of indices j_1, \ldots, j_n such that $\omega_1 \in H_{j_1}$, $\omega_2 \in H_{j_2}$, and $H_{j_i} \cap H_{j_{i+1}} \neq \emptyset$ for each i. Then, \sim is an equivalence relation on H. Since H is connected and the equivalence classes of \sim are open, there is precisely one equivalence class, i.e., $\omega_1 \sim \omega_2$ for all $\omega_1, \omega_2 \in H$. Fix $\omega_0 \in H$. For each k, take $\omega_k \in H_k$ and define $M_k = H_k \cup \bigcup_{i=1}^n H_{j_i}$, where j_1, \ldots, j_n are such that $\omega_k \in H_{j_1}$, $\omega_0 \in H_{j_n}$ and $H_{j_i} \cap H_{j_{i+1}} \neq \emptyset$ for all i. By Corollary 3.9, M_k is TIP. Thus, $H = \bigcup_k M_k$ is TIP as well, since $\omega_0 \in M_k \cap M_{k+1}$ for each k.

Example 3.11. Let $\mathcal{X} \subset \mathbb{R}^n$ and $\mathcal{Y} \subset \mathbb{R}^m$ be Borel sets and μ and ν the corresponding Lebesgue measures.

If $\{f > 0\}$ is convex, then $\sigma(\mathcal{X}) \cap \sigma(\mathcal{Y}) = \mathcal{N}$.

Suppose in fact that $H \in \mathcal{F}$ is convex and $\mu \times \nu(H) > 0$. Since H is convex, $\mu \times \nu(H - H^c) \leq \mu \times \nu(\partial H) = 0$ where H^c and ∂H are the interior and the boundary of H. Thus, it suffices noting that H^c is open and connected.

Next two examples answer questions posed by Persi Diaconis and David Freedman.

Example 3.12. Let (\mathcal{X}, d_1) and (\mathcal{Y}, d_2) be metric spaces and $\Omega = \mathcal{X} \times \mathcal{Y}$ be equipped with anyone of the usual distances

\[d(\omega, \omega^*) = d_1(x, x^*)^2 + d_2(y, y^*)^2, \quad d(\omega, \omega^*) = d_1(x, x^*) \lor d_2(y, y^*), \]

\[d(\omega, \omega^*) = d_1(x, x^*) + d_2(y, y^*), \quad \text{where } \omega = (x, y) \text{ and } \omega^* = (x^*, y^*). \]

By Corollary 3.7, under any such d, the balls in Ω are TIP. Let $D_1 \subset \mathcal{X}$ and $D_2 \subset \mathcal{Y}$ be countable subsets and $(x_1, y_1), (x_2, y_2), \ldots$ any enumeration of the points of $D_1 \times D_2$. Suppose $\{f > 0\} = \bigcup_n H_n$, where $H_n \in \mathcal{F}$ is an open ball centered at (x_n, y_n). For some k, the ball H_k is centered at (x_1, y_2). Then, H_1 communicates with H_k and H_k communicates with H_2, and we let $j_1 = 1$, $j_2 = k$ and $j_3 = 2$. Next, for some m, the ball H_m is centered at (x_2, y_3). Then, H_2 communicates with H_m and H_m communicates with H_3, and we let $j_4 = m$ and $j_5 = 3$. Arguing in this way, $\{f > 0\}$ can be written as $\{f > 0\} = \bigcup_n H_{j_n}$, where H_{j_n} communicates with $H_{j_{n+1}}$ for all n. Since each H_{j_n} is TIP, Corollary 3.9 implies $\sigma(\mathcal{X}) \cap \sigma(\mathcal{Y}) = \mathcal{N}$.

Example 3.13. In the notation of Example 3.12, suppose $\{f > 0\} = (\bigcup_n H_n)^c$. Let $I_n = \{x : (x, y) \in H_n \text{ for some } y\}$ be the projection of H_n on \mathcal{X}. Since H_n is open, I_n is open as well. Suppose also that $\sum_n \mu(I_n) < \mu(\mathcal{X})$. Then, Corollary 3.7 yields $\sigma(\mathcal{X}) \cap \sigma(\mathcal{Y}) = \mathcal{N}$. In fact, $\{f = 0\} \subset (\bigcup_n I_n) \times \mathcal{Y}$ and $\mu(\bigcup_n I_n) \leq \sum_n \mu(I_n) < \mu(\mathcal{X})$. Letting $U_0 = \mathcal{X} - (\bigcup_n U_n)$, thus, one obtains $\{f > 0\} \supset U_0 \times \mathcal{Y}$ and $P(\mathcal{X} \in U_0) > 0$.

Let us turn now to $\sigma(\mathcal{X}) \cap \sigma(\mathcal{Y}) \neq \mathcal{N}$. Generally, the complement of a TIP set need not be TIP. One consequence is that, in spite of Corollary 3.8, the intersection of a decreasing sequence of TIP sets need not be TIP.
Example 3.14. Let $X = Y = (0, 1)$, $\mu = \nu = \text{Lebesgue measure}$, $F = (0, \frac{1}{2}) \times (0, \frac{1}{2})$ and $G_n = (\frac{1}{2} - \frac{1}{n}, 1) \times (\frac{1}{2}, 1)$. Since F and G_n are TIP and F communicates with G_n, then $H_n = F \cup G_n$ is TIP. Further, H_n is a decreasing sequence of sets. However,
\[H = \cap_n H_n = F \cup \left((\frac{1}{2}, 1) \times (\frac{1}{2}, 1) \right) \]
is not TIP. In fact, $0 < Q_H(F) < 1$, $Q_H(H) = 1$ and
\[F = ((0, \frac{1}{2}) \times (0, 1)) \cap H = ((0, 1) \times (0, \frac{1}{2})) \cap H. \]

Finally, we exhibit a situation where $\sigma(X) \cap \sigma(Y) \neq \mathcal{N}$ though P is absolutely continuous (with respect to Lebesgue measure) and has full topological support.

Example 3.15. Let $X = Y = (0, 1)$ and $\mu = \nu = \text{Lebesgue measure}$. Suppose \{ $f > 0$ \} = \{(x, y) : x, y \in I or x, y \in (0, 1) - I\}, where I is a Borel subset of $(0, 1)$ satisfying

\[0 < \mu(I \cap J) < \mu(J) \quad \text{for each nonempty open set } J \subset (0, 1). \]

Since $0 < P(I \times I) < 1$ and
\[I \times I = (I \times (0, 1)) \cap \{ f > 0 \} = ((0, 1) \times I) \cap \{ f > 0 \}, \]
then $\sigma(X) \cap \sigma(Y) \neq \mathcal{N}$. Moreover, $P(J_1 \times J_2) \geq P(I \cap J_1 \times I \cap J_2) > 0$ whenever $J_1, J_2 \subset (0, 1)$ are nonempty open sets, since $\mu(I \cap J_i) > 0$ for $i = 1, 2$. Thus, P has full topological support.

4. Two component Gibbs sampler

The Gibbs sampler, also known as Glauber dynamics, plays an important role in scientific computing. A detailed treatment can be found in various papers or textbooks; see e.g. [4], [6], [7], [9] and references therein. In this section, the Gibbs-chain is shown to meet the SLLN (Gibbs-admissibility of P) if and only if condition (6) holds. Moreover, under mild conditions (\mathcal{F} countably generated and $P \ll \mu \times \nu$), condition (6) is also equivalent to ergodicity of the Gibbs-chain on a certain subset $S_0 \subset \Omega$.

In order to define the Gibbs sampler, Y is assumed to admit a regular version of the conditional distribution given X, say $\alpha = \{ \alpha(x) : x \in \mathcal{X} \}$. Thus: (i) $\alpha(x)$ is a probability measure on \mathcal{V} for $x \in \mathcal{X}$; (ii) $x \mapsto \alpha(x)(V)$ is \mathcal{U}-measurable for $V \in \mathcal{V}$; (iii) $P(U \times V) = \int_U \alpha(x)(V)P \circ X^{-1}(dx)$ for $U \in \mathcal{U}$ and $V \in \mathcal{V}$. Similarly, X is supposed to admit a regular version of the conditional distribution given Y, say $\beta = \{ \beta(y) : y \in \mathcal{Y} \}$.

The Gibbs-chain $(X_n, Y_n)_{n \geq 0}$ has been informally described in Subsection 2.3. Formally, (X_n, Y_n) is the homogeneous Markov chain with state space (Ω, \mathcal{F}) and transition kernel

\[K(\omega, U \times V) = K((x, y), U \times V) = \int_V \beta(b)(U)\alpha(x)(db) \]

where $U \in \mathcal{U}$, $V \in \mathcal{V}$ and $\omega = (x, y) \in \Omega$.

Note that P is a stationary distribution for the chain (X_n, Y_n). Denote P the law of (X_n, Y_n) when $(X_0, Y_0) \sim P$, and P_ω the law of (X_n, Y_n) given that $(X_0, Y_0) = \omega$.

Any distributional requirement of (X_n, Y_n) (such as SLLN, CLT, ergodicity, rate of convergence) depends only on the choice of the conditional distributions α and
\(\beta \). At least if \(\mathcal{U} \) and \(\mathcal{V} \) are countably generated, however, \(\alpha \) and \(\beta \) are determined by \(P \) up to null sets. Thus, one can try to characterize properties of \((X_n, Y_n) \) via properties of \(P \). Here, we first focus on the SLLN and then on ergodicity. Recall that, in Subsection 2.3, \(P \) has been called \textit{Gibbs-admissible} if

\[
m_n(\phi) \to \int \phi \, dP, \ P\text{-a.s., for all } \phi \in L_1(P)
\]

where \(m_n(\phi) = \frac{1}{n} \sum_{i=0}^{n-1} \phi(X_i, Y_i) \).

We need the following result:

Theorem 4.1. (Diaconis, Freedman, Khare and Saloff-Coste) Given a bounded measurable function \(\phi : \Omega \to \mathbb{R} \), define \(\phi_0 = \phi, \ G_n = \sigma(X) \) or \(G_n = \sigma(Y) \) as \(n \) is even or odd, and \(\phi_n = E(\phi_{n-1} \mid G_n) \). Then,

\[
E(\phi(X_n, Y_n) \mid (X_0, Y_0) = \omega) = \phi_{2n}(\omega) \text{ for all } n \text{ and } P\text{-almost all } \omega.
\]

The previous Theorem 4.1 is a version of Theorem 4.1 of [5]. In the latter paper, the authors focus on densities so that \(P \) is assumed absolutely continuous with respect to a product measure. However, such an assumption can be dropped, as it is easily seen from the proof given in [5].

In view of Theorem 4.1 and Burkholder-Chow result mentioned in Subsection 2.1, Gibbs-admissibility and \(\sigma(X) \cap \sigma(Y) = \mathcal{N} \) look like very close conditions. In fact, they are exactly the same thing.

Theorem 4.2.

\(P \) is Gibbs-admissible \(\iff \ \sigma(X) \cap \sigma(Y) = \mathcal{N} \iff \text{condition (6) holds.} \)

Proof. The equivalence between (6) and \(\sigma(X) \cap \sigma(Y) = \mathcal{N} \) has been already proved in Corollary 3.5.

Suppose that \(P \) is Gibbs-admissible. In order to check (6), fix \(U \in \mathcal{U} \) and \(V \in \mathcal{V} \) with \(P(U \times V) = P(U^c \times V^c) = 0 \). Then, \(P(U \times V^c) > 0 \) or \(P(U^c \times V) > 0 \), say \(P(U \times V^c) > 0 \). Let

\[
M_1 = \{ y \in V^c : \beta(y)(U^c) > 0 \}, \quad U_1 = \{ x \in U : \alpha(x)(V) = \alpha(x)(M_1) = 0 \}.
\]

Then, \(P(U^c \times V^c) = 0 \) yields \(P(Y \in M_1) = 0 \), and \(P(Y \in M_1) = 0 \) together with \(P(U \times V) = 0 \) imply \(P(X \in U - U_1) = 0 \). By induction, for each \(j \geq 2 \), define

\[
M_j = \{ y \in V^c : \beta(y)(U_{j-1}^c) > 0 \}, \quad U_j = \{ x \in U_{j-1} : \alpha(x)(M_j) = 0 \}
\]

and verify that \(P(Y \in M_j) = 0 = P(X \in U_{j-1} - U_j) \). Define further \(U_{\infty} = \cap_j U_j \) and note that \(P(X \in U_{\infty}) = P(X \in U) \). Fix \(\omega = (x, y) \in U_{\infty} \times V^c \). Given \(j \), since \(\alpha(x)(M_{j+1}) = 0 \) and \(\beta(b)(U_j) = 1 \) for each \(b \in V^c - M_{j+1} \), the transition kernel \(K \) satisfies

\[
K(\omega, U_j \times V^c) = \int_{V^c} \beta(b)(U_j) \alpha(x)(db)
\]

\[
= \int_{V^c - M_{j+1}} \beta(b)(U_j) \alpha(x)(db) = \alpha(x)(V^c) = 1.
\]

Thus, \(K(\omega, U_{\infty} \times V^c) = 1 \) for all \(\omega \in U_{\infty} \times V^c \) and this implies

\[
P_\omega(X_n \in U_{\infty}, Y_n \in V^c \text{ for all } n) = 1 \quad \text{for all } \omega \in U_{\infty} \times V^c.
\]
Next, by Gibbs-admissibility of P (with $\phi = I_{U \times V^c}$), there is a set $S \in \mathcal{F}$ with $P(S) = 1$ and

$$\lim_n m_n(I_{U \times V^c}) = P(U \times V^c), \text{ } P_\omega\text{-a.s.}, \text{ for all } \omega \in S.$$

Since $P(S \cap (U_\infty \times V^c)) = P(U \times V^c) > 0$, there is a point $\omega_0 \in S \cap (U_\infty \times V^c)$. For such an ω_0, one obtains

$$P(U \times V^c) = \lim_n m_n(I_{U \times V^c}) = 1, \text{ } P_{\omega_0}\text{-a.s.}.$$

Therefore $P(Y \in V) = 0$, that is, condition (6) holds.

Finally, suppose $\sigma(X) \cap \sigma(Y) = \mathcal{N}$. By the ergodic theorem, since (X_n, Y_n) is stationary under P, for P to be Gibbs-admissible it is enough that P be 0-1-valued on the shift-invariant sub-σ-field of \mathcal{F}^∞. Let h be a bounded harmonic function, i.e., $h : \Omega \to \mathbb{R}$ is bounded measurable and $h(\omega) = \int h(t)K(\omega, dt)$ for all $\omega \in \Omega$. Because of Theorem 4.1 and h harmonic,

$$h(\omega) = E(h(X_n, Y_n) | (X_0, Y_0) = \omega) = h_{2n}(\omega) \text{ for all } n \text{ and } P\text{-almost all } \omega.$$

By Burkholder-Chow result (Subsection 2.1) and $\sigma(X) \cap \sigma(Y) = \mathcal{N}$, one also obtains

$$h_{2n} \to E(h | \sigma(X) \cap \sigma(Y)) = \int h \, dP \text{ } P\text{-a.s.}.$$

Hence, $h(\omega) = \int h \, dP$ for P-almost all ω. Let $H \in \mathcal{F}^\infty$ be such that $H = \theta^{-1}H$, where θ is the shift transformation on Ω^∞. Then,

$$h(\omega) = P_\omega(H)$$

is a bounded harmonic function satisfying $I_H = \lim_n h(X_n, Y_n), \text{ } P\text{-a.s.}$; see e.g. Theorem 17.1.3 of [8]. Since (X_n, Y_n) is stationary under P, then $I_H = h(X_0, Y_0), \text{ } P\text{-a.s.}$. Hence, $P(h = 0) = 1$ or $P(h = 1) = 1$, which implies $P(H) = \int h \, dP \in \{0, 1\}$. This concludes the proof. \qed

Theorem 4.2 is potentially useful in applications as well, since it singles out those P such that the Gibbs sampling procedure makes sense; see Subsection 2.3.

In real problems, it is useful that (X_n, Y_n) is ergodic on some known set $S \in \mathcal{F}$. By ergodicity on S, we mean $S \in \mathcal{F}$ and

$$P(S) = 1, \text{ } K(\omega, S) = 1 \text{ and } \|K^n(\omega, \cdot) - P\| \to 0 \text{ for all } \omega \in S,$$

where $\|\cdot\|$ is total variation norm and K^n the n-th iterate of K. If (X_n, Y_n) is ergodic on S, for each $\omega \in S$ one obtains

$$m_n(\phi) \to \int \phi \, dP, \text{ } P_\omega\text{-a.s., } \text{ for all } \phi \in L_1(P).$$

Thus, ergodicity on some S implies Gibbs-admissibility of P. We now seek conditions for the converse to be true.

To this end, an intriguing choice of S is

$$S_0 = \{ \omega \in \Omega : K(\omega, \cdot) \ll P \}.$$

A simple condition for $S_0 \in \mathcal{F}$ is \mathcal{F} countably generated. Thus,

Theorem 4.3. If \mathcal{F} is countably generated, condition (6) holds and $P(S_0) = 1$, then (X_n, Y_n) is ergodic on S_0.

Let \(P_0 \) and \(K_0(\omega, \cdot) \) be the restrictions of \(P \) and \(K(\omega, \cdot) \) to \(\mathcal{F}_0 \), where \(\omega \in S_0 \) and \(\mathcal{F}_0 = \{ F \cap S_0 : F \in \mathcal{F} \} \). Then, \((X_n, Y_n)\) can be seen as a Markov chain with state space \((S_0, \mathcal{F}_0)\), transition kernel \(K_0 \) and stationary distribution \(P_0 \). Also,
\[
\|K^n(\omega, \cdot) - P\| = \|K^n_0(\omega, \cdot) - P_0\| \quad \text{for all } \omega \in S_0.
\]

By standard arguments on Markov chains, thus, it is enough to prove that \(K_0 \) is aperiodic and every bounded harmonic function (with respect to \(K_0 \)) is constant on \(S_0 \). Let \(h_0 \) be one such function, i.e., \(h_0 : S_0 \to \mathbb{R} \) is bounded measurable and \(h_0(\omega) = \int h_0(t)K_0(\omega, dt) \) for all \(\omega \in S_0 \). Define \(h = h_0 \) on \(S_0 \) and \(h = 0 \) on \(S_0^c \).

Then, \(h : \Omega \to \mathbb{R} \) is bounded measurable and \(h(\omega) = \int h(t)K(\omega, dt) \) for \(P \)-almost all \(\omega \). Letting \(A = \{ \omega \in \Omega : h(\omega) = \int h dP \} \) and arguing as in the proof of Theorem 4.2, condition (6) implies \(P(A) = 1 \). Thus, \(K(\omega, A) = 1 \) for each \(\omega \in S_0 \), so that
\[
h_0(\omega) = \int h_0(t)K_0(\omega, dt) = \int h(t)K(\omega, dt) = \int h dP \quad \text{for all } \omega \in S_0.
\]

It remains to prove aperiodicity of \(K_0 \). Toward a contradiction, suppose there are \(d \geq 2 \) nonempty disjoint sets \(F_1, \ldots, F_d \in \mathcal{F}_0 \) such that
\[
K_0(\omega, F_{i+1}) = 1 \quad \text{for all } \omega \in F_i \text{ and } i = 1, \ldots, d, \text{ where } F_{d+1} = F_1.
\]

If \(P(F_1) = 1 \), then \(K_0(\omega, F_1) = 1 \) for all \(\omega \in S_0 \), contrary to \(K_0(\omega, F_1) = 0 \) for \(\omega \in F_1 \). Hence, \(P(F_1) < 1 \). Applying Theorem 4.1 to \(\phi = I_{F_1} \), one obtains
\[
K^{nd}(\omega, F_1) = \phi_{2nd}(\omega) \quad \text{for all } n \text{ and } P\text{-almost all } \omega.
\]

Hence, the Burkholder-Chow result (Subsection 2.1) and condition (6) yield
\[
K^{nd}(\cdot, F_1) = \phi_{2nd} \to E(\phi \mid \sigma(X) \cap \sigma(Y)) = \int \phi dP = P(F_1) \text{ a.s.}.
\]

Since \(\lim_n K^{nd}(\omega, F_1) = 1 \neq P(F_1) \) for all \(\omega \in F_1 \), it follows that \(P(F_1) = 0 \). But this is a contradiction, since \(P(F_1) = 0 \) implies \(K_0(\omega, F_1) = 0 \) for all \(\omega \in S_0 \). Thus, \(K_0 \) is aperiodic.

By Theorem 4.3, Gibbs-admissibility implies ergodicity on \(S_0 \) whenever \(P(S_0) = 1 \) (and \(\mathcal{F} \) is countably generated). In turn, for \(P(S_0) = 1 \), it is enough that \(P \ll \mu \times \nu \).

Theorem 4.4. If \(\mathcal{F} \) is countably generated and \(P \ll \mu \times \nu \), then \((X_n, Y_n)\) is ergodic on \(S_0 \) if and only if condition (6) holds, that is, if and only if \(P \) is Gibbs-admissible.

Proof. It suffices to prove \(P(S_0) = 1 \). Let \(f \) be a version of the density of \(P \) with respect to \(\mu \times \nu \) and
\[
f_1(x) = \int f(x, y)\nu(dy), \quad f_2(y) = \int f(x, y)\mu(dx).
\]

Define \(D_1 = \{ x : 0 < f_1(x) < \infty \}, D_2 = \{ y : 0 < f_2(y) < \infty \} \) and
\[
D = \{ x \in D_1 : \alpha(x)(D_2) = 1 \}.
\]

Since \(P(X \in D_1) = P(Y \in D_2) = 1 \), then \(P(X \in D) = 1 \). Fix \(\omega = (x, y) \in D \times Y \).

Then, \(\alpha(x) \) has density \(f(x, y)/f_1(x) \) with respect to \(\nu \). Also, \(\beta(b) \) has density
Remark 4.5. (Uniform and geometric ergodicity) Let \(f \) be ergodic in the sense that \((X,D,Y)\) is ergodic on \(D \times \mathcal{Y} \) in the sense that \(\nu(V) = 1 \) and this implies uniform ergodicity on \(D \times \mathcal{Y} \), in the sense that
\[
\sup_{\omega \in D \times \mathcal{Y}} \|K^n(\omega, \cdot) - P\| \leq q r^n
\]
for some constants \(q > 0 \) and \(r < 1 \). Also, the convergence rate \(r \) can be taken such that \(r \leq 1 - (s/t)\nu(V) \).

In fact, \(f_1 = 0 \) on \(U^c \) implies \(f = 0 \) on \(U^c \times \mathcal{Y} \), \(\mu \times \nu \)-a.e.. Thus, (6) holds by Corollaries 3.5 and 3.7, and \((X_n,Y_n)\) is ergodic on \(S_0 \) by Theorem 4.4. Since \(\mu(U) > 0 \), \(\nu(V) > 0 \) and
\[
s I_{U \times V} \leq f \quad \text{and} \quad f_1 \leq t I_U
\]
for some constants \(s, t > 0 \) and \(U \in \mathcal{U}, V \in \mathcal{V} \) with \(P(U \times V) > 0 \).

Then, \((X_n,Y_n)\) is ergodic on \(S_0 \). In addition, \((X_n,Y_n)\) is uniformly ergodic on \(D \times \mathcal{Y} \), in the sense that
\[
K(\omega, C) = \int \int I_C(a,b) \beta(b)(da) \alpha(x)(db)
= \int \int I_C(a,b) \frac{f(a,b)}{f_2(b)} \mu(da) \frac{f(x,b)}{f_1(x)} \nu(db)
= \frac{1}{f_1(x)} \int \int I_C(a,b) \frac{f(x,b)}{f_2(b)} \frac{f(a,b)}{f_2(b)} \mu(da) \nu(db)
= \frac{1}{f_1(x)} \int \int I_C(a,b) \frac{f(x,b)}{f_2(b)} P(d(a,b)).
\]
Therefore, \(K(\omega, \cdot) \ll P \), so that \(P(S_0) \geq P(D \times \mathcal{Y}) = 1 \).

We close the paper with two remarks.

Remark 4.5. (Uniform and geometric ergodicity) Let \(f, f_1, f_2 \) and \(D \) be as in the proof of Theorem 4.4, where \(\mathcal{F} \) is countably generated and \(P \ll \mu \times \nu \).

Suppose that
\[
s I_{U \times V} \leq f \quad \text{and} \quad f_1 \leq t I_U
\]
for some constants \(s, t > 0 \) and \(U \in \mathcal{U}, V \in \mathcal{V} \) with \(P(U \times V) > 0 \).

Then, \((X_n,Y_n)\) is ergodic on \(S_0 \). In addition, \((X_n,Y_n)\) is uniformly ergodic on \(D \times \mathcal{Y} \), in the sense that
\[
\sup_{\omega \in D \times \mathcal{Y}} \|K^n(\omega, \cdot) - P\| \leq q r^n
\]
for some constants \(q > 0 \) and \(r < 1 \). Also, the convergence rate \(r \) can be taken such that \(r \leq 1 - (s/t)\nu(V) \).

In fact, \(f_1 = 0 \) on \(U^c \) implies \(f = 0 \) on \(U^c \times \mathcal{Y} \), \(\mu \times \nu \)-a.e.. Thus, (6) holds by Corollaries 3.5 and 3.7, and \((X_n,Y_n)\) is ergodic on \(S_0 \) by Theorem 4.4. Since \(\mu(U) > 0 \), \(\nu(V) > 0 \) and
\[
s \mu(U) \nu(V) \leq \int_{U \times V} f \ d(\mu \times \nu) = P(U \times V)
\]
then \(0 < \nu(V) < \infty \), and one can define the probability measure
\[
\gamma(C) = \frac{1}{\nu(V)} \int I_C(a,b) I_V(b) \frac{1}{f_2(b)} P(d(a,b)), \quad C \in \mathcal{F}.
\]
Since \(f_1 = 0 \) on \(U^c \), then \(D \subset \{ f_1 > 0 \} \subset U \). Therefore, for each \(\omega = (x,y) \in D \times \mathcal{Y} \), one obtains
\[
K(\omega, C) = \int \frac{f(x,y)}{f_1(x)} I_C(a,b) I_Y(b) \frac{1}{f_2(b)} P(d(a,b)) \geq \frac{8}{t} \int I_C(a,b) I_Y(b) \frac{1}{f_2(b)} P(d(a,b)) = \frac{2}{t} \nu(V) \gamma(C), \quad C \in \mathcal{F}.
\]
Thus, \(D \times \mathcal{Y} \) is a small set such that \(P(D \times \mathcal{Y}) = 1 \), and this implies uniform ergodicity of \((X_n,Y_n)\) on \(D \times \mathcal{Y} \); see pages 1714-1715 and Proposition 2 of [9].

The previous assumptions can be adapted to obtain geometric ergodicity, in the sense that \((X_n,Y_n)\) is ergodic on \(S_0 \) and \(\|K^n(\omega, \cdot) - P\| \leq q(\omega) r^n \) for \(P \)-almost all
\(\omega \), where \(r \in (0, 1) \) is a constant and \(q \) a function in \(L_1(P) \). As an example (we omit calculations), \((X_n, Y_n)\) is geometrically ergodic whenever

\[f, f_1 \text{ are bounded, } f \geq s \text{ on } U \times V, \ f = 0 \text{ on } U^c \times V^c, \]

for some \(s > 0 \), \(U \in U \), \(V \in V \) such that

\[P(U \times V) > 0 \text{ and } \sup_{\omega \in U^c \times V^c} f(\omega) < s \frac{\mu(U)}{\mu(U^c)}. \]

Note that, for the above conditions to apply, \(\mu \) must be a finite measure. Even if long to be stated, such conditions can be useful. They apply, for instance, when \((\Omega, \mathcal{F})\) is the Borel unit square, \(\mu = \nu = \) one-dimensional Lebesgue measure, and \(P \) uniform on the lower or upper half triangle.

Remark 4.6. (The \(k \)-component case) This paper has been thought and written for the 2-component case, but its contents extend to the \(k \)-component case, with \(k \geq 2 \) any integer. In particular, Theorems 4.2, 4.3 and 4.4 can be adapted to the general \(k \)-component Gibbs sampler.

Acknowledgements: We are grateful to Persi Diaconis for suggesting the problem and for encouraging and helping us.

References

Patrizia Berti, Dipartimento di Matematica Pura ed Applicata "G. Vitali", Università di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy
E-mail address: berti.patrizia@unimore.it

Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy
E-mail address: pratelli@mail.dm.unipi.it

Pietro Rigo (corresponding author), Dipartimento di Economia Politica e Metodi Quantitativi, Università di Pavia, via S. Felice 5, 27100 Pavia, Italy
E-mail address: prigo@eco.unipv.it